Total domination in generalized prisms and a new domination invariant

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(Total) Domination in Prisms

Using hypergraph transversals it is proved that γt(Qn+1) = 2γ(Qn), where γt(G) and γ(G) denote the total domination number and the domination number of G, respectively, and Qn is the n-dimensional hypercube. More generally, it is shown that if G is a bipartite graph, then γt(G K2) = 2γ(G). Further, we show that the bipartiteness condition is essential by constructing, for any k > 1, a (non-bipa...

متن کامل

A note on domination and total domination in prisms

Recently, Azarija et al. considered the prism G K2 of a graph G and showed that γt(G K2) = 2γ(G) if G is bipartite, where γt(G) and γ(G) are the total domination number and the domination number of G. In this note, we give a simple proof and observe that there are similar results for other pairs of parameters. We also answer a question from that paper and show that for all graphs γt(G K2) ≥ 4 3...

متن کامل

Fractional domination in prisms

Mynhardt has conjectured that if G is a graph such that γ(G) = γ(πG) for all generalized prisms πG then G is edgeless. The fractional analogue of this conjecture is established and proved by showing that, if G is a graph with edges, then γf (G×K2) > γf (G).

متن کامل

A characterization relating domination, semitotal domination and total Roman domination in trees

A total Roman dominating function on a graph $G$ is a function $f: V(G) rightarrow {0,1,2}$ such that for every vertex $vin V(G)$ with $f(v)=0$ there exists a vertex $uin V(G)$ adjacent to $v$ with $f(u)=2$, and the subgraph induced by the set ${xin V(G): f(x)geq 1}$ has no isolated vertices. The total Roman domination number of $G$, denoted $gamma_{tR}(G)$, is the minimum weight $omega(f)=sum_...

متن کامل

Roman domination in complementary prisms

The complementary prism GG of a graph G is formed from the disjoint union of G and its complement G by adding the edges of a perfect matching between the corresponding vertices of G and G. A Roman dominating function on a graph G = (V,E) is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 is adjacent to a vertex with label 2. The Roman domination number γR(G) ofG is the mini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discussiones Mathematicae Graph Theory

سال: 2019

ISSN: 1234-3099,2083-5892

DOI: 10.7151/dmgt.2256