Total domination in generalized prisms and a new domination invariant
نویسندگان
چکیده
منابع مشابه
(Total) Domination in Prisms
Using hypergraph transversals it is proved that γt(Qn+1) = 2γ(Qn), where γt(G) and γ(G) denote the total domination number and the domination number of G, respectively, and Qn is the n-dimensional hypercube. More generally, it is shown that if G is a bipartite graph, then γt(G K2) = 2γ(G). Further, we show that the bipartiteness condition is essential by constructing, for any k > 1, a (non-bipa...
متن کاملA note on domination and total domination in prisms
Recently, Azarija et al. considered the prism G K2 of a graph G and showed that γt(G K2) = 2γ(G) if G is bipartite, where γt(G) and γ(G) are the total domination number and the domination number of G. In this note, we give a simple proof and observe that there are similar results for other pairs of parameters. We also answer a question from that paper and show that for all graphs γt(G K2) ≥ 4 3...
متن کاملFractional domination in prisms
Mynhardt has conjectured that if G is a graph such that γ(G) = γ(πG) for all generalized prisms πG then G is edgeless. The fractional analogue of this conjecture is established and proved by showing that, if G is a graph with edges, then γf (G×K2) > γf (G).
متن کاملA characterization relating domination, semitotal domination and total Roman domination in trees
A total Roman dominating function on a graph $G$ is a function $f: V(G) rightarrow {0,1,2}$ such that for every vertex $vin V(G)$ with $f(v)=0$ there exists a vertex $uin V(G)$ adjacent to $v$ with $f(u)=2$, and the subgraph induced by the set ${xin V(G): f(x)geq 1}$ has no isolated vertices. The total Roman domination number of $G$, denoted $gamma_{tR}(G)$, is the minimum weight $omega(f)=sum_...
متن کاملRoman domination in complementary prisms
The complementary prism GG of a graph G is formed from the disjoint union of G and its complement G by adding the edges of a perfect matching between the corresponding vertices of G and G. A Roman dominating function on a graph G = (V,E) is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 is adjacent to a vertex with label 2. The Roman domination number γR(G) ofG is the mini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discussiones Mathematicae Graph Theory
سال: 2019
ISSN: 1234-3099,2083-5892
DOI: 10.7151/dmgt.2256